Code: 20IT3402

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

COMPUTER ORGANIZATION (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

			BL	СО	Max. Marks		
		UNIT-I			<u> </u>		
1	a)	Define Register transfer language, List and	L1	CO1	7 M		
		explain arithmetic micro operations.					
	b)	Write RTL statements for the following	L2	CO1	7 M		
		operations:					
		i) BUN ii) BSA iii) ISZ					
OR							
2	a)	List some data transfer instructions and	L1	CO1	7 M		
		explain with an example.					
	b)	Explain the use of multiplexer to transfer	L2	CO1	7 M		
		information from two source registers to one					
		destination register with a neat diagram.					
UNIT-II							
3	a)	Discuss about Memory Reference	L1	CO1	7 M		
		Instructions in detail.					

	b)	Describe the sequence of steps that takes	L2	CO1	7 M
		place during the instruction life cycle.			
	•	OR			
4	a)	Explain the interrupt cycle execution with	L2	CO1	7 M
		the help of a neat diagram.			
	b)	Illustrate the Input-Output Configuration	L3	CO1	7 M
		with all the input output instructions in			
		detail.			
		UNIT-III			
5	a)	Explain how $X = (A+B*C)/(A-B-C)$ is	L3	CO2	7 M
		evaluated in stack based computer.			
	b)	An Instruction is stored at location 300 with	L3	CO2	7 M
		its address field at location 301. The address			
		field has the value 400. A processor register			
		R1 contains the number 200. Evaluate the			
		effective address if the addressing mode of			
		the instruction is:			
		i) Immediate			
		ii) Direct			
		iii) Register – indirect			
		iv) Relative			
		v) Index with R1 as the index register.			
		OR			
6	a)	Illustrate the various categories of the set of	L1	CO2	7 M
		instructions associated with a computer.			
	b)	List out and explain the various typical	L2	CO2	7 M
		program control instructions.			

		UNIT-IV						
7	a)	Give means to identify on whether or not an overflow has occurred in 2's complement addition or subtraction operations. Describe	L3	CO3	7 M			
		with an example for each possible situation						
	b)	by assuming 4- bit registers. Explain Booth's multiplication Algorithm.	L2	CO3	7 M			
	U)	OR		CO3	/ IVI			
8	a)	Explain various cache memory mapping techniques.	L2	CO3	7 M			
	b)	Describe the following i) Need for cache memory. ii) Principle of locality of reference.	L1	CO3	7 M			
		UNIT-V						
9	a)	Give a detailed comparison between Programmed I/O and Interrupt initiated I/O.	L4	CO4	7 M			
	b)	Explain daisy-chain priority method.	L2	CO4	7 M			
	OR							
10	a)	What are the four ways by which we can achieve parallelism according to Flynn's classification?	L1	CO4	7 M			
	b)	Perform the arithmetic operation (A_i+B_i) + (C_i+D_i) with a stream of number. Specify a pipeline configuration to carry out the task. List the contents of all registers in the pipeline for i=1 through 6.	L3	CO4	7 M			